
Intersection Types for the λ-Calculus
Federico Olimpieri

1 Introduction
The writing of these notes has been inspired by a series of seminars that I gave for the Category
theory working group (Category Theory Lunch) at the School of Mathematics of the University
of Leeds.

2 Preliminaries
2.1 Integers
We consider the category Of where object are finite ordinals [n] = {1, . . . , n}, for n ∈ N,
and morphisms are functions. The category Of is symmetric strict monoidal (cocartesian in
particular), with tensor product given by addition: [n]⊕ [m] = [n+m]. We set

Olf ([m], [n]) = {α ∈ Of ([m], [n]) | α is bijective.} Oaf ([m], [n]) = {α ∈ Of ([m], [n]) | α is injective.}

Orf ([m], [n]) = {α ∈ Of ([m], [n]) | α is surjective.} Ocf ([m], [n]) = Of ([m], [n])

Then evidently the parametric family of sets O♠f ([m], [n]) for m,n ∈ N, and ♠ ∈ {l, a, r, c}
determine full subcategories of Of , that we denote as O♠f .

2.2 Lists, Multisets ans Sets
Let X be a preordered set. From O♠f we can build preorders of indexed families of objects over
finite ordinals. Let 〈a1, . . . , ak〉 be a list of elements of X . We write len(~a) for its length. We
denote lists as ~a,~b,~c . . . Given a list ~a = 〈a1, . . . , ak〉 and a function α : [k]→ [k′] we define the
right action of α on ~a as ~a{α} = 〈aα(1), . . . , aα(k)〉. We define the category X♠ of ♠-lists over
X , as follows:

1. |O♠f X| = {〈a1, . . . , an〉 | ai ∈ X}.

2. The preorder relation is the smallest one generated by the following rule:

α ∈ O♠f ([m], [n]) aα(i) ≤X bi
〈a1, . . . , an〉 ≤O♠

f
X 〈b1, . . . , bm〉

The preorder OfX is equipped with a monoidal structure given by lists concatenation ~a :: ~b.
Let X be a set. We denote as Mf (X) the free commutative monoid over X. Elements of

Mf (X) are multisets of elements of X, that we denote as a = [a1, . . . , ak] ∈ Mf , with ai ∈ X.
We denote as ℘f (X) the set of finite subsets of X. We denote finite subsets as ã = {a1, . . . , ak}
with ai ∈ X.

1

3 Pure λ-Calculus
For a proper introduction to the theory of pure λ-calculus we refer to [4, 7]. We fix a countable
set of variables V 3 x, y, z . . . The λ-terms are inductively defined via the following grammar:

Λ 3M,N ::= x | λx.M |MN

As usual, application associates to the left, and has higher precedence than abstraction. E.g.,
λx.λy.λz.xyz := λx.(λy.(λz.((xy)z))). We let M ~N (resp. λ~x.M) denote MN1 · · ·Nk (resp.
λx1. . . . λxn.M). The free variables of a term M are defined by induction on the structure of M
as follows:

FV(x) = {x} FV(λx.M) = FV(M) \ {x} FV(PQ) = FV(P) ∪ FV(Q)

If FV(M) = ∅ then M is closed. We consider λ-terms up to renaming of bound variables. This
can be made formal by the explicit definition of α-equivalence (see [7]) or by using De Brujin
indexes/levels1. If FV(M) = {x1, . . . , xn} then the closure of M is the term λx.1 . . . λx.nM.

Example 3.1. Some famous terms:

I := λx.x ∆ := λx.xx Ω := ∆∆ R := λx.f(xx) Y := λf.RR

n = λf.λx.fnx for n ∈ N

R′ = λx.λy.y(xxy) T = R′R′

I is called the identity; Y is called Curry’s fixedpoint operator; T is called Turing’s fixedpoint
operator; n is the Church numeral associated to the integer n ∈ N.

3.1 Basic Notions of Substitution
Given M,N ∈ Λ, x ∈ V we define M{N/x} ∈ Λ, the substitution of x by N in M , by induction
on the structure of M as follows:

M{N/x} =
{
N if y = x

y otherwise.
λy.M{N/x} =

{
λy.M if x = y

λy.(M{N/x}) otherwise.

PQ{N/x} = P{N/x}Q{N/x}
Given M,N1, . . . , Nn ∈ Λ, x1, . . . , xn ∈ V, xi 6= xj we define also the parallel substitution

M{N1, . . . , Nn/x1, . . . , xn},

by induction on the structure of M as follows:

x{N1, . . . , Nn/x1, . . . , xn} =
{
Ni if x = xi for some i ∈ [n]
x otherwise.

λx.M{N1, . . . , Nn/x1, . . . , xn} =
{
λx.M if x = xi for some i ∈ [n]
λx.(M{N1, . . . , Nn/x1, . . . , xn}) otherwise.

PQ{N1, . . . , Nn/x1, . . . , xn} = P{N1, . . . , Nn/x1, . . . , xn}Q{N1, . . . , Nn/x1, . . . , xn}
1These last two choices amount to taking representative of the α-equivalence classes.

2

3.2 β-Reduction
We define the one-step β-reduction relation →β⊆ Λ2 by induction as follows.

Root-step:
(λx.M)N →β M{N/x}

Contextual extension:
M →β M

′

λx.M →β λx.M
′

M →β M
′

MN →β M
′N

N →β N
′

MN →β MN ′

We denote as →∗⊆ Λ2 the transitive and reflexive closure of →β . We denote as =β⊆ Λ2

the smallest equivalence relation generated by →∗ . The β-reduction is the computation rule of
λ-calculus. It should be thought of as an execution procedure of functional programs.

Example 3.2. We give some examples of reductions.

(λx.x)M →β M ∆M →β MM Ω→β Ω
Y →β λf.fRR YM →β M(λx.M(xx))(λx.M(xx)) =β M(YM)

T →β λy.y(Ty) TM →∗ M(TM)
It is worth noting that while Curry’s operator Y validates the fixedpoint rule

YM = MYM

by the means of β-equality, Turing’s one validates it just by β-reduction

TM →∗ MTM.

3.3 Normalization Properties
A program produces an output when its execution on a given input terminates. This is modeled
in the λ-calculus via the notion of normalization. A term of the shape (λx.M)N is called a
redex. This kind of terms should be thought of as functions applied to an argument, attending
evaluation. A normal form is a λ-term that does not contain any redex as subterm. We denote
as NF(Λ) ⊆ Λ the set of normal forms. A λ-termM is normalizable when there exists N ∈ NF(Λ)
such thatM →∗ N. A termM is strongly normalizable if there is no infinite sequence of reduction
steps starting from M .

Proposition 3.3. Let M ∈ Λ. There exist x1, . . . , xn ∈ V, Q,Q1, . . . , Qm ∈ Λ such that

M = λx1. . . . λxn.QQ1 . . . Qm

with Q being either a variable or an abstraction.

We have the following inductive characterization of normal forms:

NF(Λ) 3 P ::= λx1. . . . λxn.Q Q ::= xP1 . . . Pm

Proposition 3.3 gives a handy characterization of λ-terms, depending on the shape of their
’heads’. If the head of a term is a variable, this intuitively means that some partial output has
been computed. This intuition leads to the definition of head-normal forms:

HNF(Λ) 3 P ::= λx1. . . . λxn.Q Q ::= xM1 . . .Mm

3

where Mi ∈ Λ. Trivially, any normal form is a head-normal form, the converse does not hold
in general. We say that a term M is head-normalizable if there exists N ∈ HNF(Λ) such that
M →∗ N.

Example 3.4. Some examples of normalization.

1. Ω is neither normalizable nor head-normalizable.

2. The term (λz.x)Ω is normalizable, with normal form x. This term is clearly not strongly
normalizable, since we have the infinite reduction chain consisting of keep firing the redex
of Ω.

3. T and Y are both head-normalizable, but they are not normalizable.

T → λy.y(Ty) ∈ HNF(Λ)→β . . . λy.y(y(. . . (Ty) . . .)) ∈ HNF(Λ)→ . . .

Y → λf.fRR ∈ HNF(Λ)→ λf.f(f(. . . (RR) . . .)) ∈ HNF(Λ)→

3.3.1 Reduction Strategies

As should be clear by now, the β-reduction models evaluation but does not say anything about
the order of computation steps. However, the order in which the evaluation is carried out is
crucial, as shown by the simple example of (λx.z)Ω, where choosing the leftmost redex as the
first one to compute gives the normal form of the term.

We shall now define a reduction strategy for λ-terms, called the head-reduction. Intuitively,
this strategy consists of firing the redexes that appear at ’head position’ in the body of the
considered term. In order to define it, we will exploit the characterization of terms given by
Proposition 3.3.

Definition 3.5 (Head-Reduction Strategy). We define a function H : Λ → Λ, called the head-
reduction strategy, by cases as follows:

H(M) =
{
λx1. . . . λxm.P{Q/x}Q1 . . . Qn if M = λx1. . . . λxm.(λx.P)QQ1 . . . Qn

M otherwise .

We remark that M →∗ H(M). We set Hn(M) to denote the n-th iteration of H on M,
assuming that H0(M) = M. We say that the head-reduction for M ends if there exists n ∈ N
s.t. Hn(M) ∈ HNF(Λ). Trivially, if the head-reduction for M ends then M is head-normalizable.

3.4 Confluence of β

An important property of the β-reduction is confluence, which assures uniqueness of normal
forms.

Theorem 3.6 (Church-Rosser/Confluence). Let M →∗ N1 and M →∗ N2. Then there exists
N ∈ Λ such that N1 →∗ N and N2 →∗ N.

A proof of theorem by Tait and Martin Löf can be found in Chapter 3.2 of [4]. The main
ingredient of the proof is the definition of an auxiliary reduction, called the parallel reduction
(where one can fire more than one redex at once).

4

4 Solvability and Böhm Trees
The λ-terms are classified into solvable/unsolvable, depending on their capability of interaction
with the environment.

Definition 4.1. A closed λ-term N is solvable if there are ~P ∈ Λ such that N ~P →∗ I. A λ-term
M is solvable if its closure λ~x.M is solvable. Otherwise M is called unsolvable.

Theorem 4.2 ([9]). A λ-term M is solvable if and only if M has an hnf.

The typical examples of unsolvables are Ω and YI. The execution of a λ-term can be rep-
resented as a possibly infinite tree, obtained by collecting all the stable pieces of information
coming out from the computation (if any). The complete lack of information is represented by
a constant ⊥.

Definition 4.3. The Böhm tree BT(M) of a λ-term M is (possibly infinite) labelled tree defined
coinductively as follows:

• if M →∗ λx1 . . . xm.xQ1 · · ·Qn (for n,m ≥ 0), then

BT(M) = λx1 . . . xm.xi

BT(Q1) BT(Qn),· · ·

• otherwise M is unsolvable and BT(M) = ⊥.

Example 4.4. The following are examples of Böhm trees.

1. BT(I) = λx.x, BT(1) = λxy.xy and BT(∆) = λx.xx.

2. More generally, if M is in β-nf then BT(M) = M .

3. Since Ω is unsolvable, we have BT(Ω) = ⊥.

4. More interestingly, BT(Y) = λf.f(f(f(f(f(· · ·))))).

Remark 4.5. Since BT(M) is defined coinductively, so is the equality between Böhm trees.
That is, BT(M1) = BT(M2) if and only if either M1,M2 are both unsolvable, or (for i = 1, 2)
Mi →→h λ~x.yNi1 · · ·Nik where BT(N1j) = BT(N2j), for all j.

The equivalence B obtained by equating all λ-terms having the same Böhm tree, i.e.

B = {(M,N) | BT(M) = BT(N)} ⊆ Λ2,

is an example of a so-called λ-theory, namely an equational theory of λ-calculus. These theories
become the main object of study when considering the computational equivalence more important
than the process of computation itself [8].

4.1 A Theory of Program Approximation
Another approach to the notion of Böhm tree is given by the theory of finite approximants.
Intuitively, the finite approximants of a λ-term M are obtained by cutting its Böhm tree into
finite pieces, replacing the removed subtree with ⊥. A finite approximant is formally defined as
a term in normal form living in a λ-calculus extended with a constant ⊥.

5

Definition 4.6. 1. The set Λ⊥ of λ⊥-terms is inductively defined by the simplified grammar:

Λ⊥ 3M,N,L ::= ⊥ | x | λx.M | MN

2. Let ≤⊥⊆ Λ⊥ × Λ⊥ denotes the least contextual closed preorder generated by setting

⊥ ≤M, for all M ∈ Λ⊥.

3. The λ⊥-terms are endowed with the reduction →β⊥, namely β-reduction extended with

λx.⊥ →⊥ ⊥,
⊥M1 · · ·Mn →⊥ ⊥ (for n > 0).

4. The set A ⊆ Λ⊥ of finite approximants is defined by:

A 3 P,Q ::= ⊥ | λx1 . . . xn.yP1 · · ·Pk (for n, k ≥ 0)

5. Given a λ-term M , the set A(M) of finite approximants of M is defined as follows:

A(M) = {P ∈ A | ∃N ∈ Λ .M →∗ N and P ≤⊥ N}.

Example 4.7. We present some examples of finite approximation.

• A(I) = {⊥, λx.x} and A(1) = {⊥, λxy.x⊥, λxy.xy}.

• A(Ω) = A(YI) = {⊥}, whence A(λx.xΩ) = {⊥, λx.x⊥}.

The following properties are well established. See, e.g., [1].

Lemma 4.8. The following statements hold.

1. M ∈ Λ⊥ is in β⊥-normal form if and only if M ∈ A.

2. For M ∈ Λ, the set A(M) is an ideal (i.e. non-empty, downward closed and directed).

In particular, we have that A(M) lives in the ideal completion of A. For A ∈ A, we denote
as ↓ A the principal ideal associated to A, i.e. ↓ A = {B ∈ A | B ≤⊥ A}.

The (syntactic) Approximation Theorem below shows that infinite Böhm trees can be recov-
ered by taking the supremum of their finite approximants.

Theorem 4.9 (Approximation Theorem). For all M ∈ Λ we have

BT(M) =
∨

A∈A(M)

↓ A

Such a supremum always exists by Lemma 4.82. Moreover, BT(M) = BT(N)⇔ A(M) = A(N).

5 Simple Types
Type systems are a class of trustworthy techniques that are used to obtain certificates of cor-
rect computational behaviour for programs. Types are specifications of program, i.e. a formal
description of what the considered program is supposed to do. In this section, we introduce and
study the most basic type system, simply typed λ-calculus (aka the Curry type system). Simply
typed λ-terms enjoy good computational properties, such as strong normalization. However, the
class of simply typed λ-terms is very restrictive and do not contain all the recursive functions.

6

5.1 Propositions as Types
We fix a countable set of atomic types At. The Simple types over At are defined by the following
grammar:

TyAt 3 A,B ::= o ∈ At | A⇒ B

the type A ⇒ B is called a function or arrow type. Simple types correspond to formula of
minimal intuitionistic logic2, taking atoms as propositional variables and arrow types as implica-
tion formulas. A context is a sequence of formulas A1, . . . , An. We denote contexts with capital
Greek letters Γ,∆ . . . The derivations of minimal intuitionistic logic are labelled trees defined
by induction as follows:

A1, . . . , Ai, . . . , An ` Ai
Γ, A ` B

Γ ` A⇒ B

Γ ` A⇒ B Γ ` A
Γ ` B

5.2 Typing à la Curry / Typing à la Church
The typing à la Curry consists in associating minimal logic derivations to pure λ-terms. The
derivations become then type derivations, i.e. formal specification assignments for programs.

A type context is a sequence of type declaration for variables x1 : A1, . . . , xn : An. We denote
type contexts with capital Greek letters Γ,∆ . . . The simple type assignment for pure λ-calculus
(aka Curry type system) is defined by induction on the structure of λ-terms as follows:

x1 : A1, . . . , xi : Ai, . . . , xn : An ` xi : Ai
Γ, x : A `M : B

Γ ` λx.M : A⇒ B

Γ `M : A⇒ B Γ ` N : A
Γ `MN : B

We write π . Γ `M : A meaning that π is a type derivation with conclusion Γ `M : A.
Another way to assign simple types to terms is given by the typing à la Church.

Λst(TyAt) 3M,N := x | λxA.M |MN

x1 : A1, . . . , xi : Ai, . . . , xn : An ` xi : Ai
Γ, x : A `M : B

Γ ` λxA.M : A⇒ B

Γ `M : A⇒ B Γ ` N : A
Γ `MN : B

Typing à la Church determines a very strong relationship between terms and typing deriva-
tions: a term can be identified with its derivation. The formal statement of this fact is the
following proposition.

Proposition 5.1. Let M ∈ Λst(TyAt). If π . Γ ` M : A and π′ . Γ ` M : A′ then π = π′ and
A = A′.

Proof. By induction on the structure of M.
Let M = x. The result is an immediate consequence of the definitions, since the typing of the

variable is univocally determined by the context.
2That consists of the implication fragment of intuitionistic logic.

7

Let M = λxA.M ′. Then π =
π′...

Γ, x : A `M : B
Γ ` λxA.M ′ : A⇒ B

and ρ =
ρ′
...

Γ, x : A `M : B′

Γ ` λxA.M ′ : A⇒ B′

We can then apply the IH and conclude.
Let M = PQ. Then π =

π1...
Γ `M : A⇒ B

π2...
Γ ` N : A

Γ `MN : B
and π′ =

π′1...
Γ `M : A′ ⇒ B′

π′2...
Γ ` N : A′

Γ `MN : B′
by IH, since π1 / M : A ⇒ B and π′1 / M : A′ ⇒ B′ then A ⇒ B = A′ ⇒ B′ and π1 = π′1. We
can apply the same kind of reasoning to N and conclude.

5.3 Simple Types under Reduction
The main basic properties of typing under reduction are subject reduction and subject expansion:

1. (Subject reduction) If Γ `M : A and M → N then Γ ` N : A.

2. (Subject expansion) If Γ ` N : A and M → N then Γ `M : A.

We shall now prove that the simple type system satisfies (1), while it does not satisfy (2), as
shown in Example 5.4. Intersection types will instead satisfy both.
Lemma 5.2 (Substitution Lemma). If Γ, x : A,∆ ` M : B and Γ,∆ ` N : A then Γ,∆ `
M{N/x} : B.
Proof. By induction on the structure of M. If M = x then M{N/x} = N and B = A so the
result is immediate by definition.

If M = λy.M ′, By definition we have B = C ⇒ D and
Γ, x : A,∆y : C `M ′ : D

Γ, x : A,∆ ` λy.M ′ : C ⇒ D

By the IH we have that Γ,∆, y : C ` M ′{N/x} : D hence Γ,∆ ` λy.(M ′{N/x}) : C ⇒ D. by
definition λy.M ′{N/x} = λy.(M ′{N/x}). We can then conclude.

If M = PQ then we have
Γ, x : A,∆ ` P : C ⇒ B Γ, x : A,∆ ` Q : C

Γ, x : A,∆ ` PQ : B
the result is again a direct application of the IH, since PQ{N/x} = P{N/x}Q{N/x}.

8

Proposition 5.3 (Subject Reduction). If Γ `M : A and M → N then Γ ` N : A.
Proof. By induction on the structure of the reduction step M → N. If M = (λx.P)Q and
N = P{Q/x} then the result is a corollary of the former lemma. The other cases follow directly
from the IH.

Example 5.4 (Failure of Subject expansion). We build a counterexample to subject expansion
for simple types. Let M = w(λv.v) with the typing w : (A⇒ A)⇒ (A⇒ A) ` w(λv.v) : A⇒ A.
Now consider I = λx.x with the typing z : A⇒ A,w : o ` I : A⇒ A. We have that I{M/z} = I
and so that z : A ⇒ A,w : o ` I{M/z} : A ⇒ A. However, we cannot type M under the same
context, since w cannot have the atomic type (it’s a function). Hence

(λz.λx.x)M → λx.x

with z : A ⇒ A,w : o ` I : A ⇒ A, but the judgement z : B,w : o ` M : B is not derivable for
any simple type B.

5.4 Simple Types are Strongly Normalizing
We now present a proof of strong normalization for the simply typed λ-calculus exploiting Tait-
Girard reducibility techniques. The reducibility argument depends on the definition of an ap-
propriate semantics for types, that assigns a set of λ-terms to each type. These terms are seen
as the realizers of the considered type. This set has to be appropriately coherent wrt λ-terms
reduction (it is a saturated set, cfr Definition 5.5). The proof consists essentially of two steps:

1. proving an adequacy lemma that links typability with realizability: if a term has type A
then is also a realizer of A.

2. Proving that the realizers of a type satisfy the required property (in our case, that they
are strongly normalizing).

Definition 5.5. A subset X ⊆ Λ is saturated when if λ~x.P{Q/x} ~Q ∈ X then λ~x.(λx.P)Q~Q ∈
X. We denote as sat(℘Λ) the set of saturated subsets of Λ.

Given X,Y ∈ ℘Λ we set X ⇒ Y = {M ∈ Λ | MN ∈ Y for all N ∈ X}. A reducibility
interpretation is a function At → sat(℘Λ). Given A ∈ TyAt, we define the set of realizers for A
by induction as follows:

JoKI = I(o) JA⇒ BKI = JAKI ⇒ JBKI .

It is easy to check that JAKI ∈ sat(℘Λ).
Lemma 5.6 (Adequacy). Let I be a reducibility interpretation. Let x1 : A1, . . . , xn : An `M : B
and Ni ∈ JAiKI for i ∈ [n]. Then M{N1, . . . , Nn/x1, . . . , xn} ∈ JBKISN

.

Proof. By induction on the structure ofM. IfM = xj for some j ∈ [n], thenM{N1, . . . , Nn/x1, . . . , xn} =
Nj and the result is given by the hypothesis that Nj ∈ JNjKI . IfM = λx.M ′ then B = C ⇒ D for
some simple types C,D. By definition,M{N1, . . . , Nn/x1, . . . , xn} = λx.M{N1, . . . , Nn/x1, . . . , xn}.
We have to prove that for all N ∈ JCKI ,M{N1, . . . , Nn/x1, . . . , xn} ∈ JDKI . By IH we have that
M{N1, . . . , Nn, N/x1, . . . , xn, x} ∈ JDKI for all N ∈ JCKI . By the fact that JDKI is saturated, we
get that (λx.M{N1, . . . , Nn/x1, . . . , xn})N ∈ JDKI . We can then conclude. If M = PQ there ex-
ists a simple type C such that x1 : A1, . . . , xn : An ` P : C ⇒ B and x1 : A1, . . . , xn : An ` Q : A.
By definitionM{N1, . . . , Nn/x1, . . . , xn} = P{N1, . . . , Nn/x1, . . . , xn}Q{N1, . . . , Nn/x1, . . . , xn}.
By IH we have that P{N1, . . . , Nn/x1, . . . , xn} ∈ JA ⇒ BKI and Q{N1, . . . , Nn/x1, . . . , xn} ∈
JAKI . Then, by definition of JA⇒ BKI we can conclude that substPx1, . . . , xnN1, . . . , Nn ∈ JBKI .

9

We set SN = {M ∈ Λ | M is strongly normalizable } and SN0 = {xN1 . . . Nk | Ni ∈ SN}.
We trivially have that SN0 ⊂ SN. We define a constant function ISN : At → ℘Λ by setting
ISN (o) = SN.

Lemma 5.7. The following statements hold.

• SN is saturated.

• For all A ∈ TyAt we have SN0 ⊆ JAKISN
⊆ SN.

Proof. • By definition of strong normalization.

• By induction on the structure of A.

Theorem 5.8. Let x1 : A1, . . . , xn : An `M : B. Then M is strongly normalizing.

Proof. By Lemma 5.7 we have that xi ∈ SN0 ⊂ JAiKISN
. By Lemma 5.6 then

M{x1, . . . , xn/x1, . . . , xn} = M ∈ JBKISN
.

By Lemma 5.7 again, we know that JBKISN
⊆ SN.

5.5 The λY-calculus
From the point of view of type theory, the simplest way to achieve an expressive enough typed
language (Turing complete) is by extending the syntax with a fixedpoint combinator. This new
calculus is called the λY -calculus.

ΛY 3M,N := x | λx.M |MN | YM

The constructor Y is called fixedpoint combinator. As usual, terms are considered up to
renaming of bound variables.

Typing rules:

x1 : A1, . . . , xi : Ai, . . . , xn : An ` xi : Ai
Γ, x : A `M : B

Γ ` λx.M : A⇒ B

Γ `M : A⇒ B Γ ` N : A
Γ `MN : B

Γ `M : A⇒ A

Γ ` YM : A
Reduction base cases:

(λx.M)N →M{N/x} YM →MYM

Remark 5.9. The λY -calculus is much more expressive of the simply typed λ-calculus. How-
ever, it loses strong normalization. Terms are in general not normalizable, since the fixedpoint
reduction is clearly non-terminating.

10

6 Intersection Types
Intersection types were first introduced by Coppo and Dezani in the late 70s [5, 3, 6] as an
extension of the simply typed λ-calculus. The main intuition behind these type disciplines is
to take into account the fact that a program can be typed in different ways. A term M both
typable with a type A and B is then typable with the intersection type A∩B. Intersection type
theories are very powerful and are generally able to characterize dynamic properties of programs.
A first result in this direction was the characterization of strongly normalizing terms: a term
is typable in an appropriate intersection type system if and only if it is strongly normalizable
(see Chapter 4 of [7]). One can achieve this kind of results because, to the contrary of what
happens with most type theories, intersection types enjoy not only subject reduction, but also
subject expansion. The expressive power of intersection types comes with a cost: typability is
not decidable, being equivalent to the Turing halting problem.

Intersection types have been presented in many slightly different ways (see [2] for a survey).
We shall introduce two (parametric) variants of them, that we call (biased) representable and
essential intersection types. The representable intersection types consist of an extension of the
Curry type system where we add a binary monoidal product ∩ (the intersection type constructor)
with unit ω. In the essential intersection type system instead the interaction type is seen as a
list of types 〈a1, . . . , ak〉 for k ∈ N - which stands for the unbiased intersection a1 ∩ · · · ∩ ak -
and it appears only as premise of an arrow type. Essential intersection types can be easily seen
as a proper subsystem of (un)biased representable intersection types, but typability in the two
variants is equivalent, as we shall see.

6.1 (Biased) Representable Intersection Types
We fix a preorder of atoms At. The set of intersection types over At is defined by induction as
follows:

|ITy(At)| 3 a, b ::= o ∈ At | a(b | a ∩ b | ω

Types of the shape a ∩ b are called intersection types. The constant ω is the empty intersection.
We assume that 〈|ITy(At)|,∩, ω〉 is a monoid, with ∩ as product and ω as unit. The basic preorder
of types ITy(At) over At is defined as the smallest preorder on |ITy(At)| generated by the following
rules:

o ≤At o
′

o ≤ITy(At) o
′

b ≤ITy(At) a a′ ≤ITy(At) b
′

a(a′ ≤ITy(At) b(b′

a ≤ITy(At) a
′ b ≤ITy(At) b

′

a ∩ b(≤ITy(At) a
′ ∩ b′

We can also consider additional structural rules:
contr

a ≤ITy(At) a ∩ a
top

a ≤ITy(At) ω
sym

a ∩ b ≤ITy(At) b ∩ a

The linear preorder of types ITy(At)l is generated by adding the sym rule to ITy(At). The
affine preorder of types ITy(At)a is generated by adding the sym and top rules to ITy(At). The
relevant preorder of types ITy(At)r is generated by adding the sym and contr rules to ITy(At). The
Cartesian preorder of types ITy(At)c is generated by adding all the structural rules to ITy(At).

We shall now define a parametric intersection type system over ITy(At)♠ with ♠ ∈ {l, a, r, c}.
The system is parametric over the choice of At and ♠.

We denote type contexts x1 : a1, . . . , xn : an by small Greek letters γ, δ . . . Given type contexts
γ = x1 : a1, . . . , xn : an and δ = x1 : b1, . . . , xn : bn we set γ ∩ δ = x1 : a1 ∩ b1, . . . , xn : an ∩ bn.
The typing rules are defined by induction as follows:

11

var
x1 : ω, . . . , xi : ai, . . . , xn : ω ` xi : ai

γ `M : a(b δ ` N : a
app

γ ∩ δ `MN : b
γ, x : a `M : b

abs
γ ` λx.M : a(b

γ `M : a δ `M : b
∩

γ ∩ δ `M : a ∩ b
γ `M : a δ ≤ γ

≤
δ `M : a

γ `M : a a ≤ b
≤

γ `M : b
ω

x1 : ω, . . . , xn : ω `M : ω

In the case that the preorder ITy(At)♠ is Cartesian, we have also an additive presentation of
the type system:

x1 : a1, . . . , xi : ai, . . . , xn : an ` xi : ai
γ `M : a(b γ ` N : a

γ `MN : b
γ, x : a `M : b
γ ` λx.M : a(b

γ `M : a γ `M : b
γ `M : a ∩ b

γ `M : a a ≤ b
γ `M : b γ `M : ω

Remark 6.1. The additive presentation corresponds to the type system introduced by Coppo,
Dezani and Barendregt [3]. It is worth noting that the subtyping rule on contexts is now an
admissible rule, thanks to the fact that Cartesian intersection types allow the duplication of
contexts.

One can also define an unbiased version of intersection types, where we have k-ary intersection
types a1 ∩ · · · ∩ ak for all k ∈ N. In that case, the unit ω gives the 0-ary intersection type. The
typing rules for this presentation of intersection types are a straightforward extension of the rules
we gave above. The unbiased definition is one of the ingredients of essential intersection types,
that is the topic of the next section.

6.2 Essential Intersection Types
We fix again a preorder of atoms At. The set of essential intersection types over At is defined by
induction as follows:

|ITy(At)♠e | 3 a, b ::= o ∈ At | 〈a1, . . . , ak〉(b

with k ∈ N.
The preorder of essential intersection types ITy(At)♠e over At is defined as the smallest preorder

on |ITy(At)♠e | generated by the following rules:

o ≤At o
′

o ≤♠ o′
~b ≤♠ ~a a′ ≤♠ b′

~a(a′ ≤♠ ~b(b′

α ∈ O♠([m], [n]) aα(i) ≤♠ bi
〈a1, . . . , an〉 ≤♠ 〈b1, . . . , bm〉

A (essential) type context consists of a sequence of variable type declarations x1 : ~a1, . . . , xn :
~an. Given type contexts γ = x1 : ~a1, . . . , xn : ~an and δ = x1 : ~b1, . . . , xn : ~bn we set γ ⊗ δ = x1 :
~a1 :: ~b1, . . . , xn : ~an :: ~bn.

The typing rules:

~ai ≤♠ 〈a〉 ~aj ≤♠ 〈〉, for j, i ∈ [n], j 6= i

x1 : ~a1, . . . , xi : ~ai, . . . , xn : ~an ` xi : a
γ, x : ~a `M : b
γ ` λx.M : ~a(b

γ0 `M : 〈a1, . . . , ak〉(b (γi ` N : ai)ki=1 δ ≤♠
⊗k

j=0 γj

δ `MN : b

12

~ai ≤c 〈a〉
x1 : ~a1, . . . , xi : ~ai, . . . , xn : ~an ` xi : a

γ, x : ~a `M : b
γ ` λx.M : ~a(b

γ `M : 〈a1, . . . , ak〉(b (γ ` N : ai)ki=1

γ `MN : b

Figure 1: The Cartesian type system.

a′ ≤l a
x1 : 〈〉, . . . , xi : 〈a′〉, . . . , xn : 〈〉 ` xi : a

γ, x : ~a `M : b
γ ` λx.M : ~a(b

γ0 `M : 〈a1, . . . , ak〉(b (γi ` N : ai)ki=1 δ ≤l
⊗k

j=0 γj

δ `MN : b

Figure 2: The linear type system.

It is worth noting that in the system presented above there is a basic asymmetry between the
typing contexts and the type of a term. The type declaration of variables in context is indeed
given by types lists, while the type of the term can never be a list.

Again, the Cartesian case has an additive presentation, as shown in Figure 1.

Remark 6.2. We shall constantly keep implicit the subtyping choice in a rule in the case we are
taking reflexivity. So, for instance, we shall write

x : 〈a〉 ` x : a
γ0 `M : 〈a1, . . . , ak〉(b (γi ` N : ai)ki=1⊗

γj `MN : b

instead of

〈a〉 ≤ 〈a〉
x : 〈a〉 ` x : a

γ0 `M : 〈a1, . . . , ak〉(b (γi ` N : ai)ki=1
⊗
γj ≤

⊗
γj⊗

γj `MN : b

We define by induction an embedding of essential intersection types into representable inter-
section types T : |ITy(At)♠e | → |ITy(At)♠|:

T (o) = o T (〈a1, . . . , ak〉(a) =
{
T (a1) ∩ · · · ∩ T (ak) (T (a) if k > 0.
ω (T (a) otherwise.

The former function can be extended to a monotonic function between the two preorders in
a straightforward way.

Theorem 6.3. M is typable in the representable intersection type system if and only if it is
typable in the essential intersection type system.

Proof. (⇒) If M is typable then there exists a type derivation π . γ `b M : a. The result is a
straightforward induction on the structure of π.

(⇐) It follows by observing that the embedding T preserves typability.

Example 6.4. We present some examples of type derivations for essential intersection types.

13

1. One one the main differences between simple types and intersection types is that the latter
can be used to type auto-applications such as xx. This is due to the polymorphic nature
of intersection types, that can account for different computational behaviours of terms. A
typing of λx.xx :

x : 〈〈a〉(a〉 `: x〈a〉(a x : 〈a〉 ` x : a
x : 〈〈a〉(a, a〉 ` xx : a
` λx.xx : 〈〈a〉(a, a〉(a

2. Typability with intersection types is much more expressive than the one with simple types.
For instance, we can type head-normal forms that are not simply typable:

x : 〈〈〉(a〉 ` x : 〈〉(a

x : 〈〈〉(a〉 ` xΩ : a
We shall see (Section 6.3) that intersection types and the head-reduction are indeed deeply
connected. Typability in intersection type systems is equivalent to head-normalization.

3. Relevant and irrelevant intersection types differ on the typing of weakening. While in
relevant intersection type systems variables that do not appear in the body of the term must
be typed via the empty intersection 〈〉, in the affine and Cartesian cases they can be typed
with arbitrary types. A very basic and interesting example is the following:

z : 〈〉, x : 〈a〉 ` x : a
x : 〈a〉 ` λz.x : 〈〉(a

z : ~a, x : 〈a〉 ` x : a
x : 〈a〉 : λz.x : ~a(a

As we shall see (Section 6.3) the irrelevant intersection types can characterize strong nor-
malization via positive typing, i.e. strong normalizing terms are typable with types where
the empty intersection do not appear. This is not possible for relevant intersection types,
as the example of λz.x shows.

Remark 6.5. Intersection types should not be confused with product types. Within simple types,
the product is the type of a new term constructor: pairing. Intersection types instead determine a
kind of finite polymorphism, encoding possible different computational behaviours that a program
can have.

(Connection with Linear Logic) If the product type corresponds to pairing, intersection types
morally correspond to a ‘bang’ constructor, !M. From this point of view, it’s clear why we can
use just essential intersection types within the framework of pure λ-calculus. The exponential
modality ! is indeed implicit and it appears only in the term application. In order to be more
precise, lets consider the following extension of λ-terms syntax:

Λ! 3M,N ::= x | λx.M |MN | !M

Thanks to this new syntax, we can make (unbiased) representable intersection types into a syntax-
directed system. Consider indeed the following typing rule:

γ1 `M : a1 . . . γk `M : ak δ ≤
⊗
γi

δ ` !M : 〈a1, . . . , ak〉

This rules corresponds to the unbiased version of the standard introduction rule of the intersection
type. However, the introduction of the intersection type now depends on the introduction of the
term constructor !.

14

6.3 Intersection Types Under Reduction
We now study the relationship between intersection types and dynamic properties of λ-terms.

6.3.1 Subject Reduction and Expansion

As already mentioned, intersection types satisfy both subject reduction and subject expansion.

Lemma 6.6 (Subtyping is admissible). The following statements hold.

1. If γ `M : a and δ ≤♠ γ then δ `M : a.

2. If γ `M : a and a ≤♠ b then γ `M : b.

Lemma 6.7 (Weakening). Let x1 : ~a1, . . . , xn : ~an ` M : a and ~b1 ≤♠ 〈〉, . . . ,~bn ≤♠ 〈〉. Then
x1 : ~a1 :: ~b1, . . . , xn : ~an :: ~bn `M : a.

Proof. By induction on the structure of π . x1 : ~a1, . . . , xn : ~an `M : a. If M = xi then we have
π =

~ai ≤♠ 〈a〉 ~aj ≤♠ 〈〉, for j, i ∈ [n], j 6= i

x1 : ~a1, . . . , xi : ~ai, . . . , xn : ~an ` xi : a

then by compatibility of the preorder of types wrt list concatenation we have ~aj :: ~bj ≤ 〈〉 :: 〈〉 = 〈〉
for j 6= i and ~ai :: ~bi ≤ 〈a〉 :: 〈〉 = 〈a〉. We can then conclude. If M = λx.M ′ then π =

π′...
x1 : ~a1, . . . , xn : ~an, x : ~a `M ′ : a
x1 : ~a1, . . . , xn : ~an ` λx.M ′ : ~a(a

by IH we have x1 : ~a1 :: ~b1, . . . , xn : ~an :: ~bn, x : ~a :: 〈〉 ` M ′ : a. Then we can conclude that
x1 : ~a1 :: ~b1, . . . , xn : ~an :: ~bn ` λx.M ′ : ~a(a. If M = PQ then π =

Proposition 6.8 ((De)substitution). The following statements hold.

1. If γ0, x : 〈a1, . . . , ak〉 `M : b, γi ` N : ai for 1 ≤ i ≤ k and δ ≤♠
⊗
γj then δ `M{N/x} :

b.

2. If δ ` M{N/x} : b then there exist an intersection type 〈a1, . . . , ak〉 and type contexts
γ0, . . . , γk such that δ ≤♠

⊗
γj , γ0, x : 〈a1, . . . , ak〉 `M : b and γi ` N : ai for 1 ≤ i ≤ k.

Proof. 1. By induction on the structure of M, exploiting Lemma 6.6.

2. By induction on the structure of M, exploiting Lemma 6.6.

Theorem 6.9 (Subject Reduction/Expansion). The following statements hold.

1. If M →β N and γ `M : a then γ ` N : a.

2. If M →β N and γ ` N : a then γ `M : a.

Proof. 1. By induction on the structure of the reduction step M →β N. The base case where
M = (λx.P)Q and N = P{Q/x} is a direct corollary of Lemma 1. The other cases are
immediate consequence of the IH.

15

2. By induction on the structure of the reduction step M →β N. The base case where M =
(λx.P)Q and N = P{Q/x} is a direct corollary of Lemma 2. The other cases are immediate
consequence of the IH.

6.4 Normalization Theorems
In this section we present reducibility proofs of several normalization thoerems for intersection
types. In particular, we shall prove that, under appropriate assumptions, intersection types
characerize head-normalization, β-normalization and strong normalization.

6.4.1 Typing of (Head) Normal Forms

Lemma 6.10. Let M ∈ Λ be a head-normal form. Then M is typable in the intersection type
system R.

Proof. We have that M = λx1 . . . λxm.xQ1 · · ·Qn. We prove it for xQ1 · · ·Qn, choosing as list
of variables ~y = ~x ⊕ 〈x1, . . . , xm〉 = 〈y1, . . . , yk〉 where k = m + len(~x), the extension being
immediate. Let b = 〈〉(· · ·(〈〉(a for a arbitary type. It is enough to take the following
type derivation π =

y1 : 〈〉, . . . , x : 〈b〉, . . . , yk : 1〈〉 ` x : 〈〉(· · ·(〈〉(a

y1 : 〈〉, . . . , x : 〈b〉, . . . , yk : 〈〉 ` xQ1 · · ·Qn : a

Corollary 6.11. Let M ∈ Λ. If M is head-normalizable then M is typable in system R.

Proof. Corollary of the former lemma and Theorem ??.

Definition 6.12. We inductively define two subsets Pos,Neg of |ITy(At)|:

• |At| ⊂ Pos and |At| ⊂ Neg;

• if ~a ∈ Neg! and a ∈ Pos then ~a(a ∈ Pos.

• if ~a ∈ Pos! such that ~a 6= 〈〉 and a ∈ Neg then ~a(a ∈ Neg.

We remark that the two considered subset defines two subpreorders of ITy(At) in the natural
way. If a ∈ Pos (resp. a ∈ Neg) we say that a is positive (resp. negative). For a type context γ,
we say that it is positive (resp. negative) when all its elements are.

We also define another subset |ITy(At)+| ⊆ |ITy(At)| as the smallest set generated by the
following grammar:

o ∈ At | 〈a0, . . . , ak〉 ⇒ a

hence if ~a(a ∈ |ITy(At)+| then ~a 6= 〈〉. Clearly also |ITy(At)|+ defines a subpreorder of ITy(At)
in the natural way.

Lemma 6.13. Let M ∈ Λ be a β-normal form. Then γ ` M : a for some negative context γ
and positive type a.

16

Proof. By induction on the size of M = λx1. . . . λxm.xQ1 . . . Qn. We set ~y = ~x ⊕ 〈x1, . . . , xm〉.
We prove the result for M ′ = xQ1 . . . Qn, the extension being immediate. By IH we have that
γi ` Qi : ai for some γi ∈ S(Neg)len(~y), ai ∈ Pos for i ∈ [n]. Consider the type b = 〈a1〉(· · ·(
〈an〉 ⇒ o. Since a1, . . . , an ∈ Pos and o ∈ Neg we have that b ∈ Neg.

Let γ0 = 〈〉, . . . 〈b〉, . . . 〈〉. Then we have by definition
⊗n

j=0 γj `M : o.

Corollary 6.14. Let M ∈ Λ. If M is β-normalizable then

(JMK~x)|Pos 6= ∅Pos,(S(Neg))len(~x) .

Proof. Corollary of the former lemma and Theorem ??.

Lemma 6.15. Let M ∈ Λ be a β-normal form and S be an irrelevant resource monad. Then

(JMK~x)|D+ 6= ∅D+,(S(D+))len(~x) .

Proof. By induction on the size of M = λx1. . . . λxm.xQ1 . . . Qn. We set ~y = ~x ⊕ 〈x1, . . . , xm〉.
We prove the result for M ′ = xQ1 . . . Qn, the extension being immediate. If n = 0 we use the
irrelevancy of the resource monad and we type x as follows

♦~a1 , . . . 1a, . . . ,♦~alen(~y)

y1 : ~a1, . . . , x : 〈a〉, . . . , ylen(~y) ` x : a

and by Theorem ?? we conclude. If n 6= 0 then the proof follows the same pattern as the one of
Lemma 6.13.

Corollary 6.16. Let M ∈ Λ and S be an irrelevant resource monad. If M is β-normalizable
then

(JMK~x)|D+ 6= ∅D+,(S(D+))len(~x) .

Proof. Corollary of the former lemma and Theorem ??.

6.4.2 Reducibility Approach

A reducibility interpretation is a monotonic function I : At → 〈sat(℘Λ)〉, where we recall that
the latter is the poset of saturated subsets (Definition 5.5) of Λ, ordered by inclusion.

Given a type a ∈ ITy(At)♠e , we define the set of I-realizers of a by induction as follows:

JoKI = I(o) J〈a1, . . . , ak〉KI =
{⋂k

i=1JaiKI if k > 0.
Λ otherwise.

J~a(aKI = J~aKI ⇒ JaKI

where we recall that for X,Y ⊆ Λ, X ⇒ Y = {M ∈ Λ | for all N ∈ X,MN ∈ Y }. It is easy to
see that JaKI is saturated.

Lemma 6.17 (Subtyping). If a ≤ a′ then JaKI ⊆ Ja′KI .

Proof. By induction on the structure of a. The base case derives by the fact that I is monotonic.

17

x1 : [], . . . , xi : [a], . . . , xn : [] ` xi : a
γ, x : a `M : b
γ ` λx.M : a(b

γ0 `M : [a1, . . . , ak] (b (γi ` N : ai)ki=1∑k
j=0 γj `MN : b

Figure 3: Gardner-De Carvalho non-idempotent intersection type system

ãi ≤ {a}
x1 : ã1, . . . , xi : ãi, . . . , xn : ãn ` xi : a

γ, x : ã `M : b
γ ` λx.M : ã(a

γ `M : {a1, . . . , ak}(b (γ ` N : ai)ki=1

γ `MN : b

Figure 4: Ehrhard’s presentation of the idempotent intersection type system.

6.4.3 Combinatorial Proofs of Normalization

In the case of linear and affine intersection types it is possible to give alternative proofs of head
and β-normalization, that do not rely on impredicative tecniques as instead was the case for
reducibility arguments. The proofs depend on the fact that the size of type derivations decreases
under leftmost reduction. For the rest of the section, we write just R to denote the system R♣

for ♣ ∈ {a, l}.

Theorem 6.18 (Affine Strong Normalization). If γ `+
a M : a then M is strongly normalizing.

6.5 From Essential Intersection Types to Multi-Types and Set-Types
We introduced intersection types as a preorder, exploiting several monoid constructions over
preordered sets. However, it is common practice among researchers in the field to collapse
the preorder into a partial order, via the canonical quotient. This process leads to particular
presentations of the intersection type, based on datatypes other than lists.

Consider ITy(At)♣e for ♣ ∈ {l, a, r}. We define an equivalence relation over it as the smallest
one generated by the following rule: a ∼ a′ when a ∼=♣ a′. An explicit presentation of this
quotient exploits multisets:

ITy(At)♣e / ∼3 a, b ::= o ∈ At | [a1, . . . , ak] (b

Remark 6.19. It is worth noting that in the linear case, the preorder rule is slightly redundant
and could be replaced by

ai ≤ bi
[a1, . . . , ak] ≤ [b1, . . . , bk]

If we restrict to the linear case and we take a set as atomic preorder At, then ITy(At)♣e / ∼ also
collapses into a set. This particular case corresponds to the well-known Gardner-De Carvalho
non-idempotent intersection type system, see Figure 3.

18

a ∈ ãi
x1 : ã1, . . . , xi : ãi, . . . , xn : ãn ` xi : a

γ, x : ã `M : b
γ ` λx.M : ã(a

γ `M : {a1, . . . , ak}(b (γ ` N : ai)ki=1

γ `MN : b

Figure 5: Krivine’s presentation of the idempotent intersection type system.

6.6 From Simple to Intersection Types
We define an embedding ST : ST(At) → |ITy(At)| of simple types into (essential) intersection
types by induction as follows:

ST(o) = o ST(A⇒ B) = 〈ST(A)〉(ST(B).

Theorem 6.20. If x1A1, . . . , xn : An ` M : A then x1 : 〈ST(A1)〉, . . . , xn : 〈ST(An)〉 `c M :
ST(a).

Proof. By induction on the structure of π . Γ `M : A.

Remark 6.21. It is worth noting that Theorem 6.20, as it is stated, works only for Cartesian
intersection types. Indeed, it is easy to find counterexamples in the other cases. Consider f :
A ⇒ A ⇒ B, x : A ` fxx : B. We have ST(A ⇒ A ⇒ B) = 〈ST(A)〉 (〈ST(A)〉 (ST(B).
However, in the linear an affine cases the type context is forced to be f : 〈〈ST(A)〉(〈ST(A)〉(
ST(B)〉, x : 〈ST(A),ST(A)〉, since contraction is not allowed. In the relevant case instead, the
counterexample is given by any weakening, such as y : B, x : A ` x : A. However, typability
with simple types clearly implies typability with intersection types in all the cases, as an indirect
consequence of Theorems .

References
[1] Roberto M. Amadio and Pierre-Louis Curien. Domains and Lambda-calculi. New York, NY,

USA: Cambridge University Press, 1998. isbn: 0-521-62277-8.
[2] Steffen Van Bakel. “Strict Intersection Types for the Lambda Calculus”. In: 43.3 (Apr.

2011). doi: 10.1145/1922649.1922657.
[3] Henk Barendregt, Mario Coppo, and Mariangiola Dezani-Ciancaglini. “A Filter Lambda

Model and the Completeness of Type Assignment”. In: The Journal of Symbolic Logic 48.4
(1983), pp. 931–940. issn: 00224812. (Visited on 08/03/2022).

[4] Henk P. Barendregt. The lambda-calculus, its syntax and semantics. revised. Studies in Logic
and the Foundations of Mathematics 103. 1984.

[5] Mario Coppo and Mariangiola Dezani-Ciancaglini. “A new type-assignment for lambda
terms”. In: Archiv für Mathematische Logik und Grundlagenforschung. 1978, pp. 139–156.

[6] Mario Coppo, Mariangiola Dezani-Ciancaglini, Furio Honsell, and Giuseppe Longo. “Ex-
tended Type Structures and Filter Lambda Models”. In: Logic Colloquium ’82. Ed. by G.
Lolli, G. Longo, and A. Marcja. Vol. 112. Studies in Logic and the Foundations of Mathemat-
ics. Elsevier, 1984, pp. 241–262. doi: https://doi.org/10.1016/S0049-237X(08)71819-
6.

19

[7] Jean-Louis Krivine. Lambda-calculus, types and models. Ellis Horwood series in computers
and their applications. 1993.

[8] Stefania Lusin and Antonino Salibra. “The Lattice of Lambda Theories”. In: J. Log. Comput.
14.3 (2004), pp. 373–394.

[9] Christopher P. Wadsworth. “The Relation Between Computational and Denotational Prop-
erties for Scott’s D∞-Models of the Lambda-Calculus”. In: SIAM J. Comput. 5.3 (1976),
pp. 488–521. url: https://doi.org/10.1137/0205036.

20

